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Announcements

• Project Proposal Presentation (Group):
• April 15, 2025
• 15 mins + 5 mins

• Quiz 2 → April 17, 2025

• Comprehensive Quiz → May 01, 2025

• Lab 5: QML
• Final Project Presentation (Group):

• 30 mins + 5 mins
• Two Groups, May 06, 2025
• Two Groups, May 08, 2025
• Report + Slides need to be submitted as well.
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Public Key Cryptography

• Public Key Cryptography = Asymmetric Cryptography
• Uses two keys that come in pairs:

• Public Key (shared openly)
• Private Key (kept secret)

• Keys are mathematically linked but different.
• Usage:

• One key encrypts the message.
• The other key decrypts the message.
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How Public Key Encryption Works

• Sender encrypts the message using the recipient’s public key.

• Recipient decrypts the message using their private key.
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Public Key Cryptography

Strengths:

• Better Scalability: Number of keys grows linearly with users.

• Supports Non-Repudiation: Digital signatures prove authorship.

• Simplified Key Distribution: Public keys are openly shareable.

Weakness:

• Slow: Computation is heavier than symmetric cryptography.
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Security of Public Key Cryptography

• Based on trapdoor one-way function.
• One-way function:

• Easy to compute: Y = f (X )
• Infeasible to reverse: find X from Y such that X = f −1(Y )

• Trapdoor one-way function:
• Y = fk(X ): easy if k and X are known
• X = f −1

k (Y ): easy if k and Y are known
• X = f −1

k (Y ): infeasible if only Y is known but k is unknown

• Example: Integer Factorization Problem:
• Given primes p and q, compute N = p × q easily.
• Given N, finding p and q is hard.

Designing a public-key algorithm is to find an appropriate trapdoor one-way function.
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Requirements for Public Key Cryptography

• It is computationally easy to generate a pair of public key and private key.

• It is computationally easy to generate a ciphertext using the public key.

• It is computationally easy to decrypt the ciphertext using the private key.

• It is computationally infeasible to determine the private key from the public key.

• It is computationally infeasible to recover the message from the ciphertext and the
public key.
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Uses of Public Key Cryptography

1. Encryption/Decryption:
• Suppose we encrypt message, M, with Bob’s public key, PK
• Only Bob’s private key, SK ,can decrypt to find M

2. Digital Signature:
• Bob signs by “encrypting” with his private key.
• Anyone can verify the signature by “decrypting” with Bob’s public key.
• Only the private key holder (Bob) could have created the valid signature.
• It is like a handwritten signature.

3. Key Exchange:
• Two parties cooperate to securely exchange a session key.
• Symmetric key cryptosystems are used later with the session key.
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RSA

• Invented by Rivest, Shamir, and Adleman (RSA)1 in 1977

• An equivalent system was developed secretly in 1973 at Government
Communications Headquarters (GCHQ), the British signals intelligence agency, by
the English mathematician Clifford Cocks

• Depends on difficulty of integer factorization problem – product of VERY
LARGE prime numbers

• Generation of RSA public-private key pair:
• Let p and q be two large prime numbers.
• Let N = p × q be the modulus.
• Choose e relatively prime to φ(N), where φ(N) = (p − 1)(q − 1).
• Find d such that e · d ≡ 1 mod φ(N).
• Public key is (N, e)
• Private key is d (Note: p and q are also secrets!)

1
Rivest, Ronald L., Adi Shamir, and Leonard Adleman. ”A method for obtaining digital signatures and public-key cryptosystems.”

Communications of the ACM 21, no. 2 (1978): 120-126.
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RSA Key Generation

• Select two large random prime numbers:

p and q

• Compute the modulus:
N = p × q

• N is used in both public and private keys.
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RSA Key Generation

• Compute Euler’s totient function:

φ(N) = (p − 1)(q − 1)

• φ(N) is the number of integers less than N that are coprime to N.
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RSA Key Generation

• Choose a public exponent e such that:

1 < e < φ(N) and gcd(e, φ(N)) = 1

• e and φ(N) must be coprime.
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RSA Key Generation

• Compute the private exponent d such that:

e × d ≡ 1 mod φ(N)

• d is the modular inverse of e modulo φ(N).

• Public Key: (N, e)

• Private Key: (N, d)

• Important: p and q must be kept secret!
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RSA: Encryption and Decryption

• To encrypt a message M:
C = Me mod N

where C is the ciphertext.

• To decrypt the ciphertext C :

M = Cd mod N

where M is the recovered plaintext.

• N: Modulus, e: Encryption exponent, d : Decryption exponent.
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RSA: Security Considerations

• Recall that e and N are public.

• If an attacker can factor N, they can compute φ(N) and find d since:

e × d ≡ 1 mod φ(N)

• Factoring the modulus N breaks RSA.

• RSA Problem: Is factoring the only way to break RSA?
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Public-Key Cryptanalysis

• Brute-force attack
• Try all possible keys.

• Derivation of private key from public key
• Try to find the relationship between the public key and the private key.
• Attempt to compute the private key from the public key.

• Probable-message attack
• The public key is known.
• Encrypt all possible messages.
• Try to find a match between the ciphertext and one of the encrypted messages.
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Does RSA Really Work?

• Given the ciphertext:
C = Me mod N

we want to prove that decryption recovers the message:

M = Cd mod N = Med mod N

• We will use Euler’s Theorem:
• If M is relatively prime2 to N, then:

Mφ(N) ≡ 1 mod N

• This theorem is the key reason why RSA works!

2
The two numbers M and N do not share any common factors except 1. gcd(M,N) = 1
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RSA Proof

• We know that:
e × d ≡ 1 mod (p − 1)(q − 1)

• By definition of congruence, this means:

e × d = k(p − 1)(q − 1) + 1

where k is an integer.

• Recall that:
φ(N) = (p − 1)(q − 1)

• Thus:
e × d = kφ(N) + 1

• This relationship is crucial for the next step.
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RSA Proof

• Start from:
Med = Mkφ(N)+1

• Using properties of exponents:

Mkφ(N)+1 = Mkφ(N) ×M

• By Euler’s theorem:

Mφ(N) ≡ 1 mod N ⇒ (Mφ(N))k ≡ 1k ≡ 1 mod N

• Thus:
Med ≡ M × 1 = M mod N
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RSA Proof

• Therefore, RSA decryption correctly recovers the original message:

Cd mod N = M

• Note: RSA also works if M is not relatively prime to N, but the proof becomes
more complicated.

• RSA relies on the special relationship:

e × d ≡ 1 mod φ(N)

and the structure of modular arithmetic!
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RSA Example: Key Generation

• Choose two prime numbers:
p = 5, q = 11

• Compute modulus:
N = p × q = 5× 11 = 55

• Compute Euler’s totient:

φ(N) = (p − 1)(q − 1) = 4× 10 = 40
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RSA Example: Public and Private Keys

• Choose public exponent:

e = 3 (since gcd(3, 40) = 1)

• Compute private exponent d :

e × d ≡ 1 mod 40

• Solve:
3× 27 = 81 ⇒ 81 mod 40 = 1

• Thus:
d = 27

• Public Key: (N = 55, e = 3) Private Key: d = 27
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RSA Example: Encryption

• Suppose message:
M = 7

• Encrypt:
C = Me mod N = 73 mod 55

• Calculate:
73 = 343, 343 mod 55 = 13

• Thus, ciphertext:
C = 13
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RSA Example: Decryption

• Decrypt ciphertext:

M = Cd mod N = 1327 mod 55

• Step 1: Precompute small powers of 13 modulo 55
• 132 mod 55 = (13× 13) mod 55 = 169 mod 55 = 4
• 134 mod 55 = (4× 4) mod 55 = 16
• 138 mod 55 = (16× 16) mod 55 = 256 mod 55 = 36
• 1316 mod 55 = (36× 36) mod 55 = 1296 mod 55 = 31

• Goal: Use these to build 1327 easily without computing 1327 directly!
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RSA Example: Decryption

• Step 2: Break 27 into binary sum of powers of 2

27 = 16 + 8 + 2 + 1

• Thus:
1327 = 1316 × 138 × 132 × 131 mod 55

• Step 3: Multiply step-by-step under modulo 55
• 31× 36 mod 55 = 1116 mod 55 = 16
• 16× 4 mod 55 = 64 mod 55 = 9
• 9× 13 mod 55 = 117 mod 55 = 7

• Thus, recovered message:
M = 7

• We get back the original message 7 after decryption!
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Factoring N : Näıve and Advanced Algorithms

• The näıve algorithm (trial division) tests all divisors up to
√
N.

• Every divisor larger than
√
N must have a corresponding smaller divisor.

• Worst-case time complexity: exponential in n = log(N) (the number of digits
needed to specify N).

• Faster algorithms discovered by number theorists:
• Quadratic Field Sieve (1981): runs in approximately 2O(

√
n).

• Number Field Sieve: fastest known, runs in roughly 2O(n1/3).
• The correctness of the Number Field Sieve depends on an unproven conjecture.
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Breaking RSA?

Breaking a 2048-bit RSA key would take 1 billion years with a
classical computer.

27/47



Public Key Cryptography Shor’s Algorithm

Breaking RSA?

Breaking a 2048-bit RSA key would take 1 billion years with a
classical computer.

How long would it take for a quantum computer?
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Breaking RSA?

A quantum computer could do it in 100 seconds.3

3
https://www.technologyreview.com/2019/05/30/65724/how-a-quantum-computer-could-break-2048-bit-rsa-encryption-in-8-hours/
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Shor’s Algorithm

Problem?

Say we are given a number N that is the product of two prime numbers p and q. The
goal is to factor N, i.e., to find its factorsp and q.
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Factoring with Classical Computers

The best-known classical algorithm for factoring large numbers is the number field
sieve.
The exact working of the number field sieve is beyond the scope of this lecture, but its
runtime for factoring an n-bit number grows approximately like en

1/3
, which is

considered subexponential.
This means:

• The runtime grows faster than any polynomial function of n, making factoring
inefficient for classical computers.

• However, it grows slower than a true exponential function, due to the influence of
natural logarithms.

As a result, factoring remains hard but not as hard as purely exponential problems.
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Overview of Shor’s Algorithm4

• Goal: Efficiently factor a large number N = pq where p and q are prime.
• Shor’s Algorithm consists of three key steps:

1. Choose a random number a and compute gcd(a,N).
2. Find the period r of ax mod N.
3. Use r to factor N.

• Combines classical and quantum techniques.

4Shor, Peter W. ”Algorithms for quantum computation: discrete logarithms and factoring.”
In Proceedings 35th annual symposium on foundations of computer science, pp. 124-134. Ieee,
1994.
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Step 1: Pick a Random Number a

Choosing a for Coprimality

• Pick a random integer 1 < a < N.

• Compute gcd(a,N).

• If gcd(a,N) ̸= 1, we are lucky! We have already found a nontrivial factor of N.

• Otherwise, proceed to Step 2.

Example: If N = 15 and we pick a = 6,

gcd(6, 15) = 3

Thus, p = 3 and q = 5.
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Step 2: Find the Period r

Finding the Period

• Find the smallest positive integer r such that:

ar ≡ 1 mod N

• Classically hard but efficient with quantum computers.
• Requirements:

• r must be even.
• ar/2 ̸≡ −1 mod N.
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Period r

What is Period r?
• Consider the function:

f (x) = ax mod N

• The period r is the smallest positive integer such that:

ar ≡ 1 mod N

• Powers of a modulo N repeat after r steps.

• Mathematically, r is the order of a in the group Z∗
N .
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Example: Finding the Period r

Example: Let a = 2, N = 15

• Compute:
x 2x mod 15

1 2
2 4
3 8
4 1

• Thus, 24 ≡ 1 mod 15

• Therefore, the period r = 4
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Example: Finding the Period r for a = 3, N = 17

Powers of 3 Modulo 17

x 3x mod 17

1 3
2 9
3 10
4 13
5 5
6 15
7 11
8 16

x 3x mod 17

9 14
10 8
11 7
12 4
13 12
14 2
15 6
16 1

Thus, the period is:
r = 16
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Why is Finding the Period Important?

• Once r is found:

ar ≡ 1 mod N ⇒ (ar/2 − 1)(ar/2 + 1) ≡ 0 mod N

Note that,

ar − 1 =
(
ar/2

)2
− (1)2 =

(
ar/2 − 1

)(
ar/2 + 1

)
• If r is even and ar/2 ̸≡ −1 mod N, we can compute:

gcd(ar/2 − 1,N) or gcd(ar/2 + 1,N)

• These yield nontrivial factors of N.

Thus, finding r is the key to factoring N efficiently!
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Special Cases

• If r is odd, go back and pick a new a.

• If ar/2 ≡ −1 mod N, pick a new a.

• With probability at least 50%, a good a can be chosen after a few tries.
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Step 3: Use r to Factor N

Using the Period

• From Step 2, we know:
ar ≡ 1 mod N

• This implies:
ar − 1 ≡ 0 mod N

• Therefore, ar − 1 is divisible by N:

ar − 1 = kN

for some integer k .
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Factoring ar − 1

• Recall:
ar − 1 = (ar/2 − 1)(ar/2 + 1)

• Thus:
(ar/2 − 1)(ar/2 + 1) = kpq

• At least one of ar/2 − 1 or ar/2 + 1 must share a nontrivial factor with N.
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Finding the Factors

• Compute:
p = gcd(ar/2 − 1,N)

q = gcd(ar/2 + 1,N)

• These computations yield nontrivial factors p and q.

Thus, we have factored N.
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Example: Factoring N = 15

• Pick a = 2.

• gcd(2, 15) = 1, so continue to Step 2.

• Find the period of 2x mod 15: r = 4.

• Compute:
ar/2 = 22 = 4

• Check:
ar/2 + 1 = 5 (5 mod 15 ̸= 14)
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Example Continued: Factoring N = 15

• Compute:
p = gcd(4− 1, 15) = gcd(3, 15) = 3

q = gcd(4 + 1, 15) = gcd(5, 15) = 5

• Thus, N = 3× 5.

Successfully factored!
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Bottleneck and Post-Quantum Cryptography

• Bottleneck: Finding the period r is classically hard.

• Quantum Advantage: Quantum computers can find periods efficiently.

• Impact: RSA and similar cryptosystems would be broken.

• Post-Quantum Cryptography: New cryptosystems resistant to quantum attacks
are being developed.
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Exercises

1. Use Shor’s algorithm to factor N = 35.

(a) Pick a value of a such that gcd(a,N) = 1 so that we can continue with the
remaining steps of the algorithm.

(b) What is the period of ax mod N? Find the period classically. Ensure the period r is
even and ar/2 ̸≡ −1 mod N.

(c) Calculate the factors p = gcd(ar/2 − 1,N) and q = gcd(ar/2 + 1,N).

2. Use Shor’s algorithm to factor N = 209. Pick a = 22.

(a) Show that gcd(a,N) ̸= 1.
(b) What are the factors of N?
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Question?
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